223 research outputs found

    Plasmonic-Photonic Hybrid Nanodevice

    Full text link
    In this thesis, we propose to tackle this important issue by designing and realizing a novel nano-optical device based on the use of a photonic crystal (PC) structure to generate an efficient coupling between the external source and a NA. In this dissertation, the content is arranged into three charpters. Chapter 1 introduces the theoritical background of this research including surface plasmon and photonic crystal concepts. This chapter also shows the design of the hybrid devices and demonstrates the numerical simulation of their optical properties. Chapter 2 mainly describes the process and the fabricated samples. The nanodevices are fabricated on an InP membrane substrate. The critical technology for the fabrication is complex electron beam lithography. With this technology the alignment of the positions of PC structure and NA is well controlled. Chapter 3 demonstrates the optical characterizations of the hybrid nanodevices including far-field characterizations and near-field characterizations. The far-field measurement is performed by micro-photoluminescence spectroscopy at room temperature. The results show that for the defect PC cavities, the presence of the NA influences the optical properties of the laser, such as lasing threshold and laser wavelength. The near-field measurement is performed by near-field scanning microscopy, at room temperature also. The investigation shows that the NA modifies the optical field distribution of the laser mode. The modification depends on the position and direction of the NA and it is sensitive to the polarization of the optical field.Comment: Doctoral thesi

    Plasmonic-photonic crystal coupled nanolaser

    Full text link
    We propose and demonstrate a hybrid photonic-plasmonic nanolaser that combines the light harvesting features of a dielectric photonic crystal cavity with the extraordinary confining properties of an optical nano-antenna. In that purpose, we developed a novel fabrication method based on multi-step electron-beam lithography. We show that it enables the robust and reproducible production of hybrid structures, using fully top down approach to accurately position the antenna. Coherent coupling of the photonic and plasmonic modes is highlighted and opens up a broad range of new hybrid nanophotonic devices

    Evaluation of the Effect of Saturated Silty and Fine Sand Foundation Improved by Vibro-Flotation in Seismic Area

    Get PDF
    The improvement of liquefaction foundations in seismic region has been concerning many engineers. The authors had carried out experimental studies on the improvement of saturated silty and fine sand foundations at the suburbs of Beijing by vibroflotation method. The test results are described and the improvement effects are evaluated in this paper

    NASA Prediction of Worldwide Energy Resource High Resolution Meteorology Data For Sustainable Building Design

    Get PDF
    A primary objective of NASA's Prediction of Worldwide Energy Resource (POWER) project is to adapt and infuse NASA's solar and meteorological data into the energy, agricultural, and architectural industries. Improvements are continuously incorporated when higher resolution and longer-term data inputs become available. Climatological data previously provided via POWER web applications were three-hourly and 1x1 degree latitude/longitude. The NASA Modern Era Retrospective-analysis for Research and Applications (MERRA) data set provides higher resolution data products (hourly and 1/2x1/2 degree) covering the entire globe. Currently POWER solar and meteorological data are available for more than 30 years on hourly (meteorological only), daily, monthly and annual time scales. These data may be useful to several renewable energy sectors: solar and wind power generation, agricultural crop modeling, and sustainable buildings. A recent focus has been working with ASHRAE to assess complementing weather station data with MERRA data. ASHRAE building design parameters being investigated include heating/cooling degree days and climate zones

    High-throughput cell-based screening reveals a role for ZNF131 as a repressor of ERalpha signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estrogen receptor α (ERα) is a transcription factor whose activity is affected by multiple regulatory cofactors. In an effort to identify the human genes involved in the regulation of ERα, we constructed a high-throughput, cell-based, functional screening platform by linking a response element (ERE) with a reporter gene. This allowed the cellular activity of ERα, in cells cotransfected with the candidate gene, to be quantified in the presence or absence of its cognate ligand E2.</p> <p>Results</p> <p>From a library of 570 human cDNA clones, we identified zinc finger protein 131 (ZNF131) as a repressor of ERα mediated transactivation. ZNF131 is a typical member of the BTB/POZ family of transcription factors, and shows both ubiquitous expression and a high degree of sequence conservation. The luciferase reporter gene assay revealed that ZNF131 inhibits ligand-dependent transactivation by ERα in a dose-dependent manner. Electrophoretic mobility shift assay clearly demonstrated that the interaction between ZNF131 and ERα interrupts or prevents ERα binding to the estrogen response element (ERE). In addition, ZNF131 was able to suppress the expression of pS2, an ERα target gene.</p> <p>Conclusion</p> <p>We suggest that the functional screening platform we constructed can be applied for high-throughput genomic screening candidate ERα-related genes. This in turn may provide new insights into the underlying molecular mechanisms of ERα regulation in mammalian cells.</p

    Nonlinear dynamics of global atmospheric and earth system processes

    Get PDF
    During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges
    • …
    corecore